Super flexible composite semiconductors for next-gen printed displays – Tech Xplore
Click here to sign in with or
Forget Password?
Learn more
share this!
25
Twit
Share
Email
July 13, 2023
This article has been reviewed according to Science X’s editorial process and policies. Editors have highlighted the following attributes while ensuring the content’s credibility:
fact-checked
peer-reviewed publication
trusted source
proofread
by Indian Institute of Science
Scientists at the Department of Materials Engineering, Indian Institute of Science (IISc), have developed a super flexible, composite semiconductor material that may have applications in next-generation flexible or curved displays, foldable phones and wearable electronics.
Traditional semiconductor devices—such as transistors, which are the building blocks of most electronic circuits—used in display industries are either made of amorphous silicon or amorphous oxides, neither of which are flexible or strain tolerant. Adding polymers to the oxide semiconductors may increase their flexibility, but there is a limit to how much can be added without compromising the semiconductor’s performance.
In a new study published in Advanced Materials Technologies, the researchers have found a way to fabricate a composite containing a significant amount of polymer—up to 40% of the material weight—using a solution-process technique, specifically inkjet printing. In contrast, previous studies have reported only up to 1%–2% polymer addition. Interestingly, the approach enabled the semiconducting properties of the oxide semiconductor to remain unaltered with the polymer addition. The added large quantity of polymer also made the composite semiconductor highly flexible and foldable without deteriorating its performance.
The composite semiconductor is made up of two materials—a water-insoluble polymer such as ethyl cellulose that provides flexibility, and indium oxide, a semiconductor which brings in excellent electronic transport properties. To design the material, the researchers mixed the polymer with the oxide precursor in such a way that interconnected oxide nanoparticle channels are formed (around phase-separated polymer islands) through which electrons can move from one end of a transistor (source) to the other (drain), ensuring a steady current flow.
The key to form these connected pathways, the researchers found, was the choice of the right kind of water-insoluble polymer that does not mix with the oxide lattice when the oxide semiconductor is being fabricated. “This ‘phase separation’ and the formation of polymer-rich islands helps in crack arrest, making it super flexible,” says Subho Dasgupta, Associate Professor in the Department of Materials Engineering, and corresponding author of the study.
Semiconductor materials are usually fabricated using deposition techniques such as sputtering. Instead, Dasgupta’s team uses inkjet printing to deposit their material onto various flexible substrates ranging from plastics to paper. In the study, a polymer material called “Kapton” was used.
Just like words and images printed on paper, electronic components can be printed on any surface using special functional inks containing either electrically conducting, semiconducting or insulating materials. However, there are challenges.
“Sometimes it is very difficult to get a continuous and homogeneous film. Therefore, we had to optimize certain protocols, for example, preheating the printed semiconductor layer on the Kapton substrate prior to high temperature annealing,” explains first author Mitta Divya, former Ph.D. student at the Department of Materials Engineering and currently a postdoc at King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
More information: Mitta Divya et al, Super Flexible and High Mobility Inorganic/Organic Composite Semiconductors for Printed Electronics on Polymer Substrates, Advanced Materials Technologies (2023). DOI: 10.1002/admt.202300256
Explore further
Feedback to editors
Jun 21, 2024
0
Jun 21, 2024
0
Jun 21, 2024
0
Jun 20, 2024
0
Jun 19, 2024
0
11 hours ago
Jun 21, 2024
Jun 21, 2024
Jun 21, 2024
Jun 21, 2024
Jun 21, 2024
Jun 21, 2024
Jun 21, 2024
Jun 21, 2024
Jun 21, 2024
Jun 9, 2023
Jan 4, 2023
Feb 16, 2023
Jan 20, 2020
Jun 24, 2022
Jan 24, 2019
Jun 20, 2024
Jun 19, 2024
Jun 18, 2024
Jun 14, 2024
Jun 14, 2024
Jun 13, 2024
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Tech Xplore in any form.
Daily science news on research developments and the latest scientific innovations
Medical research advances and health news
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.