Leveraging IBM Cloud for electronic design automation (EDA) workloads – IBM

Electronic design automation (EDA) is a market segment consisting of software, hardware and services with the goal of assisting in the definition, planning, design, implementation, verification and subsequent manufacturing of semiconductor devices (or chips). The primary providers of this service are semiconductor foundries or fabs.
While EDA solutions are not directly involved in the manufacture of chips, they play a critical role in three ways:
The increasing demands for computers to match the higher fidelity simulations and modeling workloads, more competition, and the need to bring products to market faster mean that EDA HPC environments are continually growing in scale. Organizations are looking at the best leveraging technologies—such as accelerators, containerization and hybrid cloud—to gain a competitive computing edge.
Electronic design automation (EDA) software plays a pivotal role in shaping and validating cutting-edge semiconductor chips, optimizing their manufacturing processes, and ensuring that advancements in performance and density are consistently achieved with unwavering reliability.
The expenses associated with acquiring and maintaining the necessary computing environments, tools and IT expertise to operate EDA tools present a significant barrier for startups and small businesses seeking entry into this market. Simultaneously, these costs remain a crucial concern for established firms implementing EDA designs. Chip designers and manufacturers find themselves under immense pressure to usher in new chip generations that exhibit increased density, reliability, and efficiency and adhere to strict timelines—a pivotal factor for achieving success.
This challenge in integrated circuit (IC) design and manufacturing can be visualized as a triangular opportunity space, as depicted in the figure below:
In the electronic design automation (EDA) space, design opportunities revolve around three key resources:
These resources delineate the designer’s available opportunity space.
For design businesses, the key challenge is selecting projects that promise the highest potential for business growth and profitability. To expand these opportunities, an increase in the pool of designers, licenses or compute infrastructure is essential.
To expand computing infrastructure on-premises, extensive planning and time are required for the purchase, installation, configuration and utilization of compute resources. Delays may occur due to compute market bottlenecks, the authorization of new data center resources, and the construction of electrical, cooling and power infrastructure. Even for large companies with substantial on-premises data centers, quickly meeting the demand for expanded data centers necessitates external assistance.
The second factor limiting realizable opportunities is the pool of designers. It is a challenge to hire designers, being highly skilled engineers, swiftly. The educational foundation required for design takes years to establish, and it often takes a year or more to effectively integrate new designers into existing design teams. This makes designers the most inelastic component on the left side of the figure, constraining business opportunities.
Lastly, EDA licenses are usually governed by contracts specifying the permissible quantities and types of tools a firm can use. While large enterprises may explore enterprise licensing contracts that are virtually unlimited, they are prohibitively expensive for startups and small to medium-sized design firms.
Firms (irrespective of size) aiming to expand their business horizons and gain a competitive edge in terms of time-to-market can strategically leverage two key elements to enhance opportunities: cloud computing and new EDA licensing.
The advent of cloud computing enables the rapid expansion of compute infrastructure by provisioning or creating new infrastructure in public clouds within minutes, in contrast to the months required for internal infrastructure development. EDA software companies have also started offering peak-licensing models, enabling design houses to utilize EDA software in the cloud under shorter terms than traditional licensing contracts.
Leveraging cloud computing and new EDA licensing models, most design houses can significantly expand their business opportunity horizons. The availability of designers remains an inelastic resource; however, firms can enhance their design productivity by harnessing the automation advantages offered by EDA software and cloud computing infrastructure provisioning.
In conjunction with IBM’s deep expertise in semiconductor technology, data, and artificial intelligence (AI), our broad EDA and HPC product portfolio encompasses systems, storage, AI, grid, and scalable job management. Our award-winning storage and data transfer products—such as IBM Storage Scale, IBM Spectrum LSF and IBM Aspera—have been tightly integrated to deliver high-performance parallel storage solutions and large-scale job management across multiple clusters and computing resources.
IBM Cloud EDA infrastructure offers foundry-secure patterns and environments, supported by a single point of ownership. EDA firms can quickly derive value from secure, high-performance, user-friendly cloud solutions built on top of IBM’s industry-leading cloud storage and job management infrastructure.
In the coming months, IBM technical leaders will publish a white paper highlighting our unique capability to offer optimized IBM public cloud infrastructure for EDA workloads, serving both large and small enterprise customers.
I would be happy to discuss the challenges faced by the EDA industry and how IBM can help. Reach out to me here.
2 min readEnabling participation in the AI-driven economy to be underpinned by fairness, transparency, explainability, robustness and privacy. 
6 min readMicrocontroller units (MCUs) and microprocessor units (MPUs) are two kinds of integrated circuits that, while similar in certain ways, are very different in many others.
2 min readAs organizations harness the power of AI while controlling costs, leveraging anything as a service (XaaS) models emerges as strategic.
4 min readAccording to research from IBM®, about 42% of enterprises surveyed have AI in use in their businesses. Of all the use cases, many of us are now extremely familiar with natural language processing AI chatbots that can answer our questions and assist with tasks such as composing emails or essays. Yet even with widespread adoption of these chatbots, enterprises are still occasionally experiencing some challenges. For example, these chatbots can produce inconsistent results as they’re pulling from large data stores…
3 min readIt’s the burning question for today’s CIOs: what do you spend your IT budget on? Cloud costs were already a challenge—in a recent survey, 24% estimated they wasted software spend. The explosion of generative AI makes it critical for organizations to consider frameworks like FinOps and technology business management (TBM) for visibility and accountability of all tech spend. But what does this all mean in practice? How can organizations shift to a more disciplined, value-driven approach to IT spend? What…
2 min readFor more than four years, Dizzion and IBM Cloud® have strategically partnered to deliver incredible digital workspace experiences to our clients. We are excited to announce that Dizzion has expanded their Desktop as a Service (DaaS) offering to now support IBM Cloud Virtual Private Cloud (VPC). Powered by Frame, Dizzion’s cloud-native DaaS platform, clients can now deploy their Windows and Linux® virtual desktops and applications on IBM Cloud VPC and enjoy fast, dynamic, infrastructure provisioning and a true consumption-based model.…

source

Facebook Comments Box

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *