Các IC dành riêng cho từng miền có phổ biến không?

Questions are surfacing for all types of design, ranging from small microcontrollers to leading-edge chips, over whether domain-specific design will become ubiquitous, or whether it will fall into the historic pattern of customization first, followed by lower-cost, general-purpose components.

Custom hardware always has been a double-edged sword. It can provide a competitive edge for chipmakers, but often requires more time to design, verify, and manufacture a chip, which can sometimes cost a market window. In addition, it’s often too expensive for all but the most price-resilient applications. This is a well-understood equation at the leading edge of design, particularly where new technologies such as generative AI are involved.

But with planar scaling coming to an end, and with more features tailored to specific domains, the chip industry is struggling to figure out whether the business/technical equation is undergoing a fundamental and more permanent change. This is muddied further by the fact that some 30% to 35% of all design tools today are being sold to large systems companies for chips that will never be sold commercially. In those applications, the collective savings from improved performance per watt may dwarf the cost of designing, verifying, and manufacturing a highly optimized multi-chip/multi-chiplet package across a large data center, leaving the debate about custom vs. general-purpose more uncertain than ever.

“If you go high enough in the engineering organization, you’re going to find that what people really want to do is a software-defined whatever it is,” says Russell Klein, program director for high-level synthesis at Siemens EDA. “What they really want to do is buy off-the-shelf hardware, put some software on it, make that their value-add, and ship that. That paradigm is breaking down in a number of domains. It is breaking down where we need either extremely high performance, or we need extreme efficiency. If we need higher performance than we can get from that off-the-shelf system, or we need greater efficiency, we need the battery to last longer, or we just can’t burn as much power, then we’ve got to start customizing the hardware.”

Even the selection of processing units can make a solution custom. “Domain-specific computing is already ubiquitous,” says Dave Fick, CEO and cofounder of Mythic. “Modern computers, whether in a laptop, phone, security camera, or in farm equipment, consist of a mix of hardware blocks co-optimized with software. For instance, it is common for a computer to have video encode or decode hardware units to allow a system to connect to a camera efficiently. It is common to have accelerators for encryption so that we can safely communicate. Each of these is co-optimized with software algorithms to make commonly used functions highly efficient and flexible.”

Steve Roddy, chief marketing officer at Quadric, agrees. “Heterogeneous processing in SoCs has been de rigueur in the vast majority of consumer applications for the past two decades or more.  SoCs for mobile phones, tablets, televisions, and automotive applications have long been required to meet a grueling combination of high-performance plus low-cost requirements, which has led to the proliferation of function-specific processors found in those systems today.  Even low-cost SoCs for mobile phones today have CPUs for running Android, complex GPUs to paint the display screen, audio DSPs for offloading audio playback in a low-power mode, video DSPs paired with NPUs in the camera subsystem to improve image capture (stabilization, filters, enhancement), baseband DSPs — often with attached NPUs — for high speed communications channel processing in the Wi-Fi and 5G subsystems, sensor hub fusion DSPs, and even power-management processors that maximize battery life.”

It helps to separate what you call general-purpose and what is application-specific. “There is so much benefit to be had from running your software on dedicated hardware, what we call bespoke silicon, because it gives you an advantage over your competitors,” says Marc Swinnen, director of product marketing in Ansys’ Semiconductor Division. “Your software runs faster, lower power, and is designed to run specifically what you want to run. It’s hard for a competitor with off-the-shelf hardware to compete with you. Silicon has become so central to the business value, the business model, of many companies that it has become important to have that optimized.”

There is a balance, however. “If there is any cost justification in terms of return on investment and deployment costs, power costs, thermal costs, cooling costs, then it always makes sense to build a custom ASIC,” says Sharad Chole, chief scientist and co-founder of Expedera. “We saw that for cryptocurrency, we see that right now for AI. We saw that for edge computing, which requires extremely ultra-low power sensors and ultra-low power processes. But there also has been a push for general-purpose computing hardware, because then you can easily make the applications more abstract and scalable.”

Part of the seeming conflict is due to the scope of specificity. “When you look at the architecture, it’s really the scope that determines the application specificity,” says Frank Schirrmeister, vice president of solutions and business development at Arteris. “Domain-specific computing is ubiquitous now. The important part is the constant moving up of the domain specificity to something more complex — from the original IP, to configurable IP, to subsystems that are configurable.”

In the past, it has been driven more by economics. “There’s an ebb and a flow to it,” says Paul Karazuba, vice president of marketing at Expedera. “There’s an ebb and a flow to putting everything into a processor. There’s an ebb and a flow to having co-processors, augmenting functions that are inside of that main processor. It’s a natural evolution of pretty much everything. It may not necessarily be cheaper to design your own silicon, but it may be more expensive in the long run to not design your own silicon.”

An attempt to formalize that ebb and flow was made by Tsugio Makimoto in the 1990s, when he was Sony’s CTO. He observed that electronics cycled between custom solutions and programmable ones approximately every 10 years. What’s changed is that most custom chips from the time of his observation contained highly programmable standard components.

Technology drivers
Today, it would appear that technical issues will decide this. “The industry has managed to work around power issues and push up the thermal envelope beyond points I personally thought were going to be reasonable, or feasible,” says Elad Alon, co-founder and CEO of Blue Cheetah. “We’re hitting that power limit, and when you hit the power limit it drives you toward customization wherever you can do it. But obviously, there is tension between flexibility, scalability, and applicability to the broadest market possible. This is seen in the fast pace of innovation in the AI software world, where tomorrow there could be an entirely different algorithm, and that throws out almost all the customizations one may have done.”

The slowing of Moore’s Law will have a fundamental influence on the balance point. “There have been a number of bespoke silicon companies in the past that were successful for a short period of time, but then failed,” says Ansys’ Swinnen. “They had made some kind of advance, be it architectural or addressing a new market need, but then the general-purpose chips caught up. That is because there’s so much investment in them, and there’s so many people using them, there’s an entire army of people advancing, versus your company, just your team, that’s advancing your bespoke solution. Inevitably, sooner or later, they bypass you and the general-purpose hardware just gets better than the specific one. Right now, the pendulum has swung toward custom solutions being the winner.”

However, general-purpose processors do not automatically advance if companies don’t keep up with adoption of the latest nodes, and that leads to even more opportunities. “When adding accelerators to a general-purpose processor starts to break down, because you want to go faster or become more efficient, you start to create truly customized implementations,” says Siemens’ Klein. “That’s where high-level synthesis starts to become really interesting, because you’ve got that software-defined implementation as your starting point. We can take it through high-level synthesis (HLS) and build an accelerator that’s going to do that one specific thing. We could leave a bunch of registers to define its behavior, or we can just hard code everything. The less general that system is, the more specific it is, usually the higher performance and the greater efficiency that we’re going to take away from it. And it almost always is going to be able to beat a general-purpose accelerator or certainly a general-purpose processor in terms of both performance and efficiency.”

At the same time, IP has become massively configurable. “There used to be IP as the building blocks,” says Arteris’ Schirrmeister. “Since then, the industry has produced much larger and more complex IP that takes on the role of sub-systems, and that’s where scope comes in. We have seen Arm with what they call the compute sub-systems (CSS), which are an integration and then hardened. People care about the chip as a whole, and then the chip and the system context with all that software. Application specificity has become ubiquitous in the IP space. You either build hard cores, you use a configurable core, or you use high-level synthesis. All of them are, by definition, application-specific, and the configurability plays in there.”

Put in perspective, there is more than one way to build a device, and an increasing number of options for getting it done. “There’s a really large market for specialized computing around some algorithm,” says Klein. “IP for that is going to be both in the form of discrete chips, as well as IP that could be built into something. Ultimately, that has to become silicon. It’s got to be hardened to some degree. They can set some parameters and bake it into somebody’s design. Consider an Arm processor. I can configure how many CPUs I want, I can configure how big I want the caches, and then I can go bake that into a specific implementation. That’s going to be the thing that I build, and it’s going to be more targeted. It will have better efficiency and a better cost profile and a better power profile for the thing that I’m doing. Somebody else can take it and configure it a little bit differently. And to the degree that the IP works, that’s a great solution. But there will always be algorithms that don’t have a big enough market for IP to address. And that’s where you go in and do the extreme customization.”

Chiplets
Some have questioned if the emerging chiplet industry will reverse this trend. “We will continue to see systems composed of many hardware accelerator blocks, and advanced silicon integration technologies (i.e., 3D stacking and chiplets) will make that even easier,” says Mythic’s Fick. “There are many companies working on open standards for chiplets, enabling communication bandwidth and energy efficiency that is an order of magnitude greater than what can be built on a PCB. Perhaps soon, the advanced system-in-package will overtake the PCB as the way systems are designed.”

Chiplets are not likely to be highly configurable. “Configuration in the chiplet world might become just a function of switching off things you don’t need,” says Schirrmeister. “Configuration really means that you do not use certain things. You don’t get your money back for those items. It’s all basically applying math and predicting what your volumes are going to be. If it’s an incremental cost that has one more block on it to support another interface, or making the block the Ethernet block with time triggered stuff in it for automotive, that gives you an incremental effort of X. Now, you have to basically estimate whether it also gives you a multiple of that incremental effort as incremental profit. It works out this way because chips just become very configurable. Chiplets are just going in the direction or finding the balance of more generic usage so that you can apply them in more chiplet designs.”

The chiplet market is far from certain today. “The promise of chiplets is that you use only the function that you want from the supplier that you want, in the right node, at the right location,” says Expedera’s Karazuba. “The idea of specialization and chiplets are at arm’s length. They’re actually together, but chiplets have a long way to go. There’s still not that universal agreement of the different things around a chiplet that have to be in order to make the product truly mass market.”

While chiplets have been proven to work, nearly all of the chiplets in use today are proprietary. “To build a viable [commercial] chiplet company, you have to be going after a broad enough market, large enough from a dollar perspective, then you can make all the investment, have success and get everything back accordingly,” says Blue Cheetah’s Alon. “There’s a similar tension where people would like to build a general-purpose chiplet that can be used anywhere, by anyone. That is the plug-and-play discussion, but you could finish up with something that becomes so general-purpose, with so much overhead, that it’s just not attractive in any particular market. In the chiplet case, for technical reasons, it might not actually really work that way at all. You might try to build it for general purpose, and it turns out later that it doesn’t plug into particular sockets that are of interest.”

The economics of chiplet viability have not yet been defined. “The thing about chiplets is they can be small,” says Klein. “Being small means that we don’t need as big a market for them as we would for a very large chip. We can also build them on different technologies. We can have some that are on older technologies, where transistors are cheaper, and we can combine those with other chiplets that might be leading-edge nodes where we could have general-purpose CPUs or NPU accelerators. There’s a mix-and-match, and we can do chiplets smaller than we can general-purpose chips. We can do smaller runs of them. We can take that IP and customize it for a particular market vertical and create some chiplets for that, change the configuration a bit, and do another run for something else. There’s a level of customization that can be deployed and supported by the market that’s a little bit more than we’ve seen in full-size chips, where the entire thing has to be built into one package.

Conclusion
What it means for a design to be general-purpose or custom is changing. All designs will contain some of each. Some companies will develop novel architectures using general-purpose processors, and these will be better than a fully general-purpose solution. Others will create highly customized hardware for some functions that are known to be stable, and general purpose for things that are likely to change. One thing has never changed, however. A company is not likely to add more customization than necessary to satisfy the needs of the market they are targeting.

Further Reading
Challenges With Chiplets And Power Delivery
Benefits and challenges in heterogeneous integration.
Chiplets: 2023 (EBook)
What chiplets are, what they are being used for today, and what they will be used for in the future.

source

Facebook Comments Box

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *